The V-model shows how the three main qualification activities (installation, operation and performance) are linked back to the design process. 

These main steps correspond to deliverables within a computerized validation framework. The left side of the V represents the specification stream – user requirements, functional specifications, hardware and software design, and module specifications. The right side of the V represents the system testing stream against the specifications. The bottom of the V indicates the code modules.


With the V-model, the document that initiates the validation process is the user requirement specification (URS). The URS describes the equipment or system as it is intended to function, and it is typically written by the system user. The original version should contain the essential requirements and the desirable requirements. As part of the validation process, Simac Masic & TSS checks the software system before launch. Clear documentation of a properly functioning system is typically found in the URS to detail what the system should do and what it could do.

Next, the URS is matched with the functional and design specifications, which often come from the system or software developer. The functional specifications describe the functions of the system and how it was built. In the V-model, the functional specifications correspond to the operational qualifications, as each of the parameters should be tested. A gap analysis is performed to identify areas where an internal requirement isn’t met. This allows recognition of risks and outlines approaches to correct the shortcomings. The design specifications define the production of the hardware, software and instrumentation and how the software meets the requirements of the functional specifications for proper function.

Testing Stream

Validation is applied to several aspects of a pharmaceutical manufacturing system. The objective is to produce “documented evidence, which provides a high degree of assurance that all parts of a system will consistently work correctly when brought on-line. Validation includes three core elements:

* Installation qualification (IQ) – confirms complete documentation, which includes checking purchase orders, proper hardware installation, and software verification according to the manufacturer’s specifications; both user and supplier share primary testing responsibility.

* Operational qualification (OQ) – confirms the system operations by testing the design requirements that are traced back to the function specifications, including software and hardware functions under normal load, and under realistic stress conditions to assess whether equipment and systems are working correctly; both user and supplier share primary testing responsibility.

* Performance qualification (PQ) – confirms that a system is capable of performing or controlling the activities of the process, while operating in a specific environment – namely, a series of checks by the user against the original requirement specifications of the system; responsibility falls solely on the user.

The last Perforance Qualification will always be performed by the user (customer) Simac Masic & TSS can assist the customer during this qualification.